The BEAT platform attests that the following results were obtained by an experiment performed on our servers. We kept all the details needed to reproduce them (toolchain, database, algorithms, libraries, dataformats and the actual experimental setup).

Published 1 year, 6 months ago, on June 29, 2017, 2:52 p.m.
Experiment: sbhatta/sbhatta/iqm-face-antispoofing-test/2/replay2-antispoofing-iqm-lda
Description: Face-antispoofing expt. using image-quality measures and LDA, on ReplayAttack database

Outputs for block Score_Analyzer

dev_eer 0.0633333
dev_eer_threshold 0.0235956
dev_far 0.06
dev_frr 0.0666667
test_far 0.055
test_frr 0.15
test_hter 0.1025
dev_numNegatives 300
dev_numPositives 60
test_numNegatives 400
test_numPositives 80
To edit a toolchain, please use a modern browser (Mozilla Firefox 3.0+, Google Chrome 1+, Apple Safari 3+, Opera 9.5+, Microsoft Internet Explorer 9+)

The experiment uses 18 image-quality measures (IQM). These IQM are computed for each frame of the input video, and the feature-sets are used to construct a 2-class classifier via Linear Discriminant Analysis (LDA).

The image-quality measures used here form a subset of the measures proposed by Galbally et al:

  author = {Galbally, Javier and Marcel, S{\'{e}}bastien},
  title = {Face Anti-spoofing Based on General Image Quality Assessment},
  booktitle = {Proceedings of the 22nd International Conference on Pattern Recognition},
  month = aug,
  year = {2014},
Terms of Service | Contact Information | BEAT platform version 1.3.1rc1 | © Idiap Research Institute - 2013-2019